Indian Statistical Institute, Bangalore

B. Math.

Third Year, First Semester
Analysis on Graphs
Date : December 29, 2023
Time: 3 hours
Instructor: B V Rajarama Bhat
In the following G is a simple graph (undirected and without loops), with vertex set $V(G)=$ $\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$.
(1) Let G be a connected graph with adjacency matrix A. Suppose G has diameter d. Show that A has at least $d+1$ distinct eigenvalues.
(2) Show that the number of spanning trees of a graph G of n vertices with Laplacian L is equal to

$$
\frac{1}{n} \lambda_{1} \cdot \lambda_{2} \ldots \lambda_{n-1}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of L arranged in decreasing order. (You may carefully state the matrix-tree theorem and use it).
(3) Show that the algebraic connectivity is monotone, that is, if $a c(G)$ denotes the second smallest eigenvalue of the Laplacian of G, and G is edge-disjoint union of two graphs H_{1}, H_{2} on same vertex set, then

$$
\begin{equation*}
a c(G) \geq a c\left(H_{1}\right)+a c\left(H_{2}\right) \geq a c\left(H_{1}\right) \tag{21}
\end{equation*}
$$

(4) (Rook's graph) Fix a natural number $m \geq 2$. Let R_{m} be a graph with vertex set equal to $\{(i, j): 1 \leq i, j \leq m\}$. Further, distinct vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ form an edge if and only if either $i_{1}=i_{2}$ or $j_{1}=j_{2}$. Show that R_{m} is a strongly regular graph. Compute the parameters of strong regularity. Use this to compute the spectrum of R_{m}. Recall that the spectrum of a strongly regular graph with parameters (n, k, a, c) are $k, \lambda_{+}, \lambda_{-}$with multiplicities $1, m_{+}, m_{-}$respectively, where

$$
\lambda_{ \pm}=\frac{1}{2}(a-c \pm \sqrt{\Delta})
$$

and

$$
m_{ \pm}=\frac{1}{2}\left[(n-1) \pm \frac{(n-1)(c-a)-2 k}{\sqrt{\Delta}}\right]
$$

with $\Delta=(a-c)^{2}+4(k-c)$.
(5) Let $N=\{0,1,2,3,4,5\}$ considered as a group under addition modulo 6 . Let H be the Cayley graph of N with generating set $S=\{2,3,4\}$. Write down adjacency, Laplacian and distance matrices of H.

